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Abstract

We present algorithms of two flavors—one rooted
in constraint satisfaction problems (CSPs) and
the other in learning dynamics—to compute
pure-strategy Nash equilibrium (PSNE) in k-
dimensional congestion games (k-DCGs) and their
variants. We first show that deciding the existence
of a PSNE in a k-DCG is NP-complete even when
players have binary and unit demand vectors. For
general cost functions (potentially non-monotonic),
we devise a new CSP-inspired algorithmic frame-
work for PSNE computation, leading to algorithms
that run in polynomial time under certain assump-
tions while offering exponential savings over stan-
dard CSP algorithms. We further refine these algo-
rithms for variants of k-DCGs. Our experiments
demonstrate the effectiveness of this new CSP
framework for hard, non-monotonic k-DCGs. We
then provide learning dynamics-based PSNE com-
putation algorithms for linear and exponential cost
functions. These algorithms run in polynomial time
under certain assumptions. For general cost, we
give a learning dynamics algorithm for an (α, β)-
approximate PSNE (for certain α and β). Lastly,
we also devise polynomial-time algorithms for
structured demands and cost functions.

1 INTRODUCTION

In non-cooperative games, a player’s payoff depends on their
own choice of action and the choices of actions by the other
players. In general, the payoff may change depending on
who chose a particular action. In a seminal paper, Rosenthal
presented a special class of games—to become famously
known as congestion games later—where the number of
players rather than the identities of the players choosing an
action is relevant [Rosenthal, 1973]. In a congestion game,

there is a set of resources (e.g., edges in a road network).
Each player has a set of strategies, where each strategy is
a subset of resources (e.g., paths in a network). A strategy
profile consists of a strategy for each player. The cost of a
resource (e.g., edge) is a function of the number of players
using that resource. Given a strategy profile, a player’s cost
is the sum of the costs of the resources used by the player. A
strategy profile is a pure-strategy Nash equilibrium (PSNE)
if no player has incentive to deviate unilaterally.

The congestion games literature can be divided into three
main frontiers: unweighted, weighted one-dimensional, and
weighted multidimensional. Unweighted congestion games
are the classical ones [Rosenthal, 1973], where the guaran-
teed existence of a PSNE naturally leads to computational
questions. In their seminal work, Monderer and Shapley
[1996] showed that any unweighted congestion game is a
potential game, which is appealing for learning dynamics.
For unweighted congestion games on networks, if the game
is symmetric (same start-end pair for all), then there exists
a polynomial-time network-flow algorithm to find a PSNE;
otherwise, the problem is PLS-complete [Fabrikant et al.,
2004], even for linear cost [Ackermann et al., 2008].

In a weighted congestion game, each player has a weight
or demand, and the cost of a resource is a function of the
sum of the demands of the players using that resource. Un-
like unweighted congestion games, a PSNE is not guaran-
teed to exist in weighted congestion games [Libman and
Orda, 1997, Fotakis et al., 2005]. Dunkel and Schulz [2008]
went one step further and showed that PSNE existence in
weighted congestion games is strongly NP-complete, even
for a constant number of players.

On the positive side, a PSNE is guaranteed to exist in a
weighted congestion game when the cost function is linear
[Fotakis et al., 2005] or exponential [Harks and Klimm,
2012]. Harks et al. [2011] characterized the existence of
potential functions. Special cases involving parallel edges
have also received attention [Milchtaich, 1996, Fotakis et al.,
2002, Gairing et al., 2004, Mavronicolas et al., 2007].
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Table 1: Our main results on k-dimensional congestion games (k-DCGs), k-class congestion games (k-CCGs), and variants.
Notation: NPC ≡ NP-Complete, n = # players, m = # resources, p = max # strategies, di = player i’s demand vector,
dN =

∑
i di, wmax = maxj dNj

, ň = max # players selecting a resource in a binary k-DCG, or max # players of a type in
a k-DCG with player types, l(i) = nonzero-element index in di for k-CCG, amax, bmax, and z are cost parameters.
† We give approximation algorithms for (α, β)-PSNE, which always exists. ‡ Klimm and Schütz [2022].
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))
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d Ordered di’s, nondec. cost, singleton strt. Always O(n log n+ nmk)
Ordered di’s, nondec. cost, shared strt. Always O(n log n+ npmk)

Structured cost, singleton strt. Always O(n log n+ nmk)

Multidimensional congestion games is a very recent frontier
which we investigate here. Introduced by Klimm and Schütz
[2014], this class of games is a generalization of weighted
congestion games where the demand of each player is a
k-dimensional vector. Very recently, Klimm and Schütz
[2022] have shown that certain affine and exponential cost
functions are the only ones for which a PSNE exists for sure.
Their characterization leads to the following computational
questions investigated here: How can we compute a PSNE
(if it exists) in multidimensional congestion games and their
variants? How hard is this computation?

These questions are motivated by many real-world applica-
tions. Advances in multidimensional congestion games may
contribute to richer traffic models that account for the het-
erogeneity in vehicles (e.g., weight, length, etc.). Such mul-
tidimensional models were envisioned by transportation re-
searchers many decades ago [Dafermos, 1972] and are now
topics of active investigation [Van Lint et al., 2008, Pi et al.,
2019, Wang et al., 2019]. Computational advances may also
contribute to various other application areas—wireless net-
works [Yamamoto, 2015], distributed systems [Nadig et al.,
2022, 2019], telecommunication [Altman et al., 2006], and
smart grids [Fadlullah et al., 2011], to name just a few.

Our Contributions
Driven by whether or not a PSNE is guaranteed to exist, we
take two fundamentally different computational approaches
inspired by CSPs and learning dynamics. The CSP approach
can handle any k-DCGs (for which a PSNE may not exist),
whereas learning dynamics can handle certain k-DCGs with
a PSNE. Table 1 summarizes our main results.

For general k-DCGs, we devise a CSP whose dual decou-
ples the players’ strategies. We give algorithms that utilize
this decoupling and run in polynomial time under certain
assumptions (Section 4). To our knowledge, this CSP frame-
work is new within the rich congestion games literature
spanning over five decades. The significance of our CSP
framework lies not only in the exponential savings it offers
compared to well-known CSP algorithms but also in its
applicability beyond congestion games.

For linear and exponential cost, we give iterative learning
dynamics algorithms for k-DCGs and their variants by de-
riving and bounding weighted potential functions (Section
5). For general cost, we show that for certain α and β, there
is always an (α, β)-approximate PSNE that can be com-
puted via learning dynamics. We also give polynomial-time
algorithms for structured cost and demands (Section 6).

The significance of our computational results can be best
understood against the backdrop of hardness results (Section
3). We show that deciding the existence of a PSNE in a k-
DCG is NP-complete for very special cases. Put together,
this paper addresses computational questions while giving
new insights for some extremely hard problems.

2 PRELIMINARIES

We formally define multi-dimensional congestion games
and related game-theoretic terms. Roughly speaking, a multi-
dimensional congestion game is a natural generalization of
weighted congestion games where the weight or demand
of each player is a multidimensional vector. The cost of
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each resource is a function of the aggregated demands of
the players using that resource.

More formally, a k-dimensional congestion game (k-DCG)
consists of a set N = {1, . . . , n} of n players and a set
R = {1, . . . ,m} of m resources. Each player i ∈ N has
two elements: (1) a strategy set Si ⊆ 2R \{∅}, defined to be
subsets of resources that i can select and (2) a k-dimensional
demand vector di = (di1 , ..., dik) ∈ Rk, consisting of the
weight or demand of player i at each dimension 1, ..., k.
Each resource r ∈ R has a cost function cr : Rk → R that
maps k-dimensional real-valued vectors to real numbers.
We use p = maxi∈N |Si| to denote the maximum number
of strategies for any player.

Given a strategy profile s = (s1, ..., sn) ∈ S = S1×...×Sn

of n players, let xr(s) =
∑

i∈N :r∈si
di be the aggregated

k-dimensional demand vector of the players who select
resource r under the strategy profile s ∈ S. Naturally, given
a strategy profile s, the cost function of player i is defined
to be πi(s) = πi(si, s−i) =

∑
r∈si

cr(xr(s)), i.e., the sum
of the costs of the resources selected by player i under si,
given others’ strategies s−i.

We are interested in computing PSNE in k-DCGs and their
variants listed below. We present these variants with mo-
tivating examples from the domain of load balancing in
distributed systems [Nadig et al., 2022, 2019, Anantha et al.,
2017]. k-DCGs naturally model various dimensions of user
demands in distributed systems, such as bit rates, latency,
error tolerance, and throughputs.

• k-DCGs with binary demand vectors di ∈ {0, 1}k
∀i. Example: data flow in distributed systems can be
short-lived or long-lived, bursty or deterministic, etc.

• k-class congestion games (k-CCGs), where each de-
mand vector has one positive element, the rest being
zeros. Example: different use-cases, such as streaming,
video conferencing, web browsing, etc.

• k-DCGs with player types, where players of the same
type are characterized by the same demand vector. Ex-
ample: categories of traffic on a campus network: VPN,
student access, scientific computation, etc.

We next define PSNE and approximate PSNE– two solution
concepts of our interest.

Definition 1. (Pure-Strategy Nash Equilibrium (PSNE)) A
strategy profile s∗ = (s∗1, ..., s

∗
n) ∈ S is a pure-strategy

Nash equilibrium (PSNE) in a k-DCG if and only if for
each player i ∈ N and any s′i ∈ Si, we have that πi(s

∗) ≤
πi(s

′
i, s

∗
−i).

Definition 2. ((α, β)-PSNE) A strategy profile s =
(s1, ..., sn) ∈ S is an (α, β)-approximate PSNE in a k-
DCG for some α ≥ 1 and β ≥ 0 if and only if for
each player i ∈ N and any s′i ∈ Si, we have that

πi(s) ≤ απi(s
′
i, s−i)+β. When we mention α-PSNE (with-

out β), we mean β = 0.

Constraint Satisfaction Problem (CSP)
A CSP is specified by a set of variables, a domain for each
variable, and a set of constraints, each constraint being
over a subset of variables known as its scope. A CSP asks
us to assign a value to each variable from their respective
domains so that all the constraints are satisfied. A wide range
of problems, such as Boolean satisfiability, map coloring,
scheduling, and even PSNE computation in games, can be
modeled as CSPs [Dechter, 2003, Gottlob et al., 2003].

We often represent the structural information of a (primal)
CSP using a primal constraint network, where each node
represents a variable, and each edge connects two variables
that appear together in a constraint (potentially with other
variables). As a result, unless the constraints are binary, we
cannot identify the scope of a constraint just by looking at
the primal constraint network.

A CSP also has a dual constraint network, where each vari-
able represents a constraint, and each edge connects two
constraints with shared variables in their scopes and is la-
beled with these shared variables. The dual constraint net-
work leads to the dual CSP, where the domain of each dual
variable is computed as follows: Consider its correspond-
ing primal constraint and assign values to the scope of the
primal constraint to satisfy it. Such assignments constitute
the domain of the dual variable. Furthermore, the dual CSP
enforces the edge-wise dual constraint that each primal vari-
able shared between any two dual variables must have the
same value in both. Therefore, the dual CSP is a reformula-
tion of the primal CSP and contains only binary constraints.

3 COMPUTATIONAL COMPLEXITY

We show that deciding the existence of a PSNE in special
variants of k-DCGs is NP-complete. The NP-hardness of
general k-DCGs is not surprising because determining a
PSNE in weighted congestion games (i.e., when k = 1) is
already strongly NP-complete [Dunkel and Schulz, 2008].

What is surprising is that we show that determining the ex-
istence of a PSNE in k-DCGs is NP-complete even when
each player i’s k-dimensional demand vector di is a binary
vector (even a unit vector) for some polynomially bounded
k. In sharp contrast, there is always a PSNE in unweighted
(1-dimensional) congestion games [Rosenthal, 1973]. Fur-
thermore, if the players have the same demand vector, the
game is guaranteed to have a PSNE by reducing it to an
unweighted congestion game. We have the following result.

Theorem 3. Deciding the existence of a PSNE in a k-DCG
is NP-complete even when the demand vector di of each
player i ∈ N is a binary vector and k is sublinear in the
number of players. That is, di ∈ {0, 1}k for all i and k =
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O(log n).

Proof Sketch. The problem is in NP because verifying that a
strategy profile s∗ ∈ S is a PSNE takes polynomial time.
For NP-hardness, we reduce from weighted congestion
games [Dunkel and Schulz, 2008]. Given a weighted
congestion game we construct a k-DCG with identical sets
of players, resources, and actions. In the k-DCG game
we give the players binary demand vectors equivalent to
the binary representations of the integer weights from the
weighted congestion game. The length of the demand vector
is set to k = ⌊logmaxi∈N d̃i⌋ + 1 where d̃i is the integer
weight of player i in the weighted congestion game. Finally,
we construct cost functions for k-DCG that we show to
yield the same cost given the same strategy profile for all
agents. Therefore, a strategy profile is a PSNE in one game
if and only if it is a PSNE in the other game. □

Next, we investigate whether PSNE computation is easier
for restricted demands. Unfortunately, even when the binary
demand vector is a unit vector, the problem remains hard.

Theorem 4. Deciding the existence of a PSNE in a k-DCG
(or a k-CCG) is NP-complete even when the demand vector
di of each player i ∈ N is a binary unit vector and k
is linear of the number of players. That is, di ∈ {x ∈
{0, 1}k;

∑k
j=1 xj = 1} for all i and k = O(n).

Proof Sketch. The problem is clearly in NP. The NP-
hardness reduction is from weighted congestion games. □

4 GENERAL COST: A CSP APPROACH

We can formulate the PSNE computation problem in a k-
DCG as a CSP, which consists of (1) a variable for each
player, (2) the domain of a variable being the corresponding
player’s strategy set, and (3) a best-response constraint for
each player i, representing i’s best responses si to any s−i.

As illustrated in Fig. 1 (a) and (b), the nature of the n-
ary best-response constraints means that both the primal
and the dual constraint networks are complete networks.
Furthermore, all players appear on each edge of the dual
network. This portrays a grim picture because it is hard to
design efficient algorithms without decoupling the players’
strategies. For example, one solution approach is to check
each strategy profile for a PSNE by verifying Definition 1.
Letting p = maxi∈N |Si|, this approach takes O(npn+1)
time, which is exponential in the number of players.

The grave computational implication of not decoupling the
players’ strategies leads us to a key technical insight. Instead
of using the above CSP, we first construct a different CSP for
k-DCGs and then consider its dual. In the new CSP, the vari-
ables are the players and the configuration Y of the game.

The domain of each player i is their strategy set Si and
that of Y is the set of all k-dimensional aggregated demand
vectors for m resources, y ≡ (y1,y2, ...,ym). There are n
binary constraints, each capturing a player’s best response
to a configuration. We use the structure of k-DCGs to define
such best responses: For any configuration y, a player i’s
best-response strategies are si ∈ Si that minimize the cost∑

r∈si
cr(y). There is an additional feasibility constraint

that enforces that the strategy profile s assigned to the play-
ers are consistent with the aggregated demand vectors y as-
signed to Y ; i.e., x1(s) = y1,x2(s) = y2, ...,xm(s) = ym.
The primal constraint network for this CSP is shown in
Fig. 1(c) and its dual in Fig. 1(d). Most notably, the dual
CSP allows us to decouple the players’ strategies from each
other.

To our knowledge, this dual CSP, which grounds our algo-
rithmic framework, has not been studied in the congestion
games literature spanning over five decades. To formalize
this dual CSP, each dual node is a primal constraint. So,
there is a dual node vi,Y for each player i’s best response to
the configuration variable Y , and there is one dual variable
vN,Y for the primal feasibility constraint (see Fig. 1(d)). For
each i ∈ N , there is an edge between vN,Y and vi,Y labeled
i, Y . For any i ̸= j ∈ N , there is an edge between vi,Y
and vj,Y labeled Y . As described in Section 2, each dual
variable has a domain consisting of satisfying assignments
for the corresponding primal constraint, and the edges in the
dual constraint network lead to dual constraints that ensure
that the shared primal variables across any edge are assigned
the same value in both endpoints of the edge.

Before presenting our algorithmic framework, we show that
the dual CSP has a solution if and only if there is a PSNE. To
see why, note that the assignments (si,y) made to the vi,Y
variables capture the players’ best responses to y, and the
edge label between any two vi,Y and vj,Y variables enforces
sharing the same y in these assignments. Furthermore, the
assignment (s,y′) made to the vN,Y variable makes sure
that the strategy profile s leads to the configuration y′, and
the labels on the edges connecting vN,Y to vi,Y enforce that
s = (s1, · · · , sn) and y = y′.

Our algorithmic framework consists of two procedures. Pro-
cedure 1 computes the domains of each vi,Y dual variable
and Procedure 2 searches for a solution using the computed
domains. As a preview, our algorithms are polynomial in n
(the number of players), p (the maximum number of strate-
gies for any player), and a maximum weight term when k
(number of dimensions) and m (number of resources) are
bounded. This is useful when the number of resources and
strategies is constant but the number of players can be large.
In fact, even with a constant number of players, determin-
ing PSNE existence a weighted congestion game is already
strongly NP-complete [Dunkel and Schulz, 2008].

As Fig 1(d) shows, Y is shared across all edges. Therefore,
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Figure 1: Our key technical insight: (a) Typical CSP for N = {1, · · · , 4}: Each node is a player with their strategy set as the
domain, and each player has a best-response constraint involving all the players. (b) The dual of (a): Each dual node BRi

represents player i’s best-response constraint with its domain being strategy profiles (si, s−i) where si is i’s best response
to s−i. Each edge shows that all players are shared between its endpoints, which makes it hard to decouple the strategies
of the players. (c) A new CSP we present where in addition to the players, there is a node Y for the configuration. The
constraints are: (1) each player i plays its best response to Y and (2) the strategies assigned to the players are consistent with
the configuration assigned to Y . (d) The dual of (c): Edges show decoupling of the players’ strategies. Contrast it with (b).

we parameterize our algorithms by any configuration given
as input. This leads to the question of how many configura-
tions there can be. The demand vector di = (di1 , ..., dik) of
each player i being an integer vector (standard assumption
[Dunkel and Schulz, 2008]), we define wj =

∑
i∈N dij

for each j = 1, ..., k. Letting wmax = maxj∈[k] wj , we
have y1,y2, ...,ym ∈ {0, ..., wmax}k. Thus, we only need
to consider at most (wmax +1)km or O((wmax)

km) config-
urations. We are now ready for the algorithms. Please see
the Appendix for pseudocode.

Procedure 1: Compute Domains of Dual Variables vi,Y
Given a configuration y ≡ (y1,y2, ...,ym), where each
yj ∈ {0, ..., wmax}k, we compute the set of strategies for
each player i that makes i “happy" under the configuration.
To do this, abusing the notation πi slightly, we define and
compute, for any i ∈ N , si, s′i ∈ Si, and si ̸= s′i,

πi(si,y) =
∑
r∈si

cr(yr)

πi(si,y, s
′
i) =

∑
r∈s′i∩si

cr(yr) +
∑

r∈s′i\si

cr(yr + di)

BRi(y) = {si ∈ Si | ∀s′i ∈ Si, πi(si,y) ≤ πi(si,y, s
′
i)}

The first equation calculates player i’s cost. The second
calculates player i’s cost when deviating from si (under y)
to s′i. BRi(y) computed in the last equation is the set of
i’s best responses to y. Therefore, the domain of vi,Y is the
union of sets {(si,y) | si ∈ BRi(y)} for all y.

We deliberately do not compute the domain of vN,Y (the
dual variable for the primal feasibility constraint) because
it may contain numerous strategy profiles that are not
PSNE. We next show how we can search for PSNE without
explicitly computing the domain of vN,Y .

Procedure 2: Search for PSNE
Given a configuration y ≡ (y1,y2, ...,ym), a PSNE
under it is a strategy profile s = (s1, ..., sn) such that

(1) (si,y) is in the domain of vi,Y for each player i, and
(2) x1(s) = y1,x2(s) = y2, ...,xm(s) = ym. The first
condition enforces players’ best responses to y, while the
second condition enforces the primal feasibility constraint.
We present the following general result.

Theorem 5. For any k-DCG, there is an algorithm to deter-
mine the existence of a PSNE in O((wmax)

km(nkp2m2 +
nkmp(wmax)

km)). The algorithm is polynomial in n, p,
and wmax, when m and k are constants.

Proof Sketch. Procedure 1 runs in O(nkp2m2) for all play-
ers. Procedure 2 can be done efficiently using dynamic pro-
gramming (DP), where we (1) first order the players 1, ..., n
and (2) create a binary table Ti(y

′
1,y

′
2, ...,y

′
m) ∈ {0, 1} for

each y′
1,y

′
2, ...,y

′
m ∈ {0, ..., wmax}k of size O((wmax)

km)
for each player i. We first initialize T0(0, ...,0) = 1 where
we have an all zero configuration. We then define
Ti(y

′
1,y

′
2, ...,y

′
m) = 1 if and only if there is y1,y2, ...,ym

such that Ti−1(y1,y2, ...,ym) = 1 and for some
si ∈ BRi(y1,y2, ...,ym), y′

r = yr + 1[r ∈ si]di for each
r ∈ R. Table Ti can be constructed by looking at all the 1
entries of Ti−1 and adding the player demand vector to the
corresponding resources for each si ∈ BRi(y1,y2, ...,ym).
The DP runs in O(nkmp(wmax)

km). □

To see the significance of the above result, note
that we can use well-known algorithms to solve
the dual CSP. For instance, backtracking algorithms
with graph-based learning can solve the dual CSP in
O
(
(n+ 1)2 ·

(
2 · pn · wkm

max

)n+1
)

time, which is exponen-
tial in n [Dechter, 2003][Ch 6]. In contrast, our algorithm
guarantees an exponential saving.

Variant: Binary Demand Vectors
In Section 3, we showed that k-DCGs with binary demand
vectors are provably hard. We can still apply Theorem 5
to derive a pseudopolynomial time algorithm when k and
m are bounded. However, an improved analysis gives us
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the following result. Note that in the case of binary demand
vectors, any j-th element of an aggregated demand vector
corresponds to the number of players having the j-th bit
of their demand vector “on.” Therefore, for clarity, we use
ň = maxj∈[k]

∑
i∈N dij in place of wmax to denote the

maximum number of players having a demand vector bit on.
The following result is particularly interesting when ň ≪ n.

Theorem 6. For k-DCGs with binary demand, there is an
O(ňkm(nkp2m2+min{nkmpňkm, nkm+1p}))-time algo-
rithm to compute a PSNE or decide none exists. The algo-
rithm is polynomial in n and p when m and k are constants.

Proof Sketch. Putting wmax = ň in Theorem 5, the running
time is O(ňkm(nkp2m2 + nkmpňkm)). However, using a
different analysis that exploits the bit-vector structure, we
can shave off a factor of km from the second term at the ex-
pense of having nkm instead of ňkm. This would be useful
when ň ≈ n. The main idea is when we consider player i in
Procedure 2, the number of configurations for Ti is at most
(i + 1)km, leading to O

(∑n
i=1

[
(i+ 1)km + kpmikm

])
or O(nkm+1p) time for Procedure 2. □

Variant: k-Class Congestion Game (k-CCG)
Let the class of player i be the index where the positive
element appears in di. Although Theorem 5 can be directly
applied to this case, we can exploit the structure of the game
to improve the running time. The key intuition is that the
players can be partitioned according to their classes. The
players in a class j ∈ [k] can only affect the j-th index of the
aggregated demand on any resource. That is, they affect the
j-th index of each of y1,y2, ...,ym. As a result, Procedure
2 can be broken into k different computational tasks, each
corresponding to a class. This idea leads us to the following
result. Notably, compared to Theorem 5, this partition-based
algorithm removes a k term from the exponent.

Theorem 7. For k-CCGs, there is an
O((wmax)

km(np2m2 + nkpm(wmax)
m)) algorithm

to compute a PSNE or decide none exists. The algorithm is
polynomial in n, p, and wmax when m and k are constants.

Proof Sketch. As a preprocessing step, we partition
the players into C1, ..., Ck based on their classes. We
now do the following operations in each partition
Cj independently. We start the DP by ordering the
players in Cj as 1, 2, ..., |Cj | (wlog). We then create
a binary table Ti(z1, z2, ..., zm) ∈ {0, 1} for each
z1, z2, ..., zm ∈ {0, ..., wmax} of size O((wmax)

m) for
each player i in Cj . We initialize T0(0, ..., 0) = 1. We
then define Ti(z1, z2, ..., zm) = 1 if and only if there is
z′1, z

′
2, ..., z

′
m such that Ti−1(z

′
1, z

′
2, ..., z

′
m) = 1 and for

some si ∈ BRi(y1,y2, ...,ym), zr = z′r + 1[r ∈ si]dij
for each r ∈ R. We have a PSNE if and only if for each
partition Cj , T|Cj |(y1j , y2j , ..., ymj) = 1. □

We next consider the special case of k-CCGs with binary
demand vectors (i.e., exactly one bit is “on” in each player’s
demand vector). This will be useful when we consider player
types next. We get the following corollary from Theorems 6
and 7. Once again, the result is interesting when ň ≪ n.

Corollary 8. For k-CCGs with binary demand vectors,
there is an O((ň)km(np2m2 + nkpm(ň)m))-time algo-
rithm to compute a PSNE or decide none exists. The algo-
rithm is polynomial in n and p when m and k are constants.

Variant: k-DCG with Player Types
To motivate this variant, consider a road-traffic setting.
There are different types of vehicles, and vehicles of the
same type share similarities in their demand vectors. We
define players to be of the same type if their demand vectors
are the same. Although this setting is very natural, to our
knowledge, it has not been fully explored in the literature.
Here, other than player types, we do not make any assump-
tions about the demands or cost functions. While this variant
is NP-hard (reduction from k-DCG by making a type for
each player), the following result is very appealing when
the maximum number of players of any type ň ≪ n.

Theorem 9. Given a k-DCG with τ types of players and at
most ň players of any type, there is an O((ň)τm(np2m2 +
nτpm(ň)m) + τnk) time algorithm to compute a PSNE or
decide that there exists none. The algorithm is polynomial
in n and p for bounded m and τ .

Proof. Let (N,R, {Si, di}i∈N , {cr}r∈R, k) be a k-DCG
instance with τ types of players. We reduce this in-
stance to a PSNE-equivalent τ -DCG instance (N,R, {Si,

d̃i}i∈N , {c̃r}r∈R, τ) as follows. First, we partition the k-
DCG players into τ types and store the k-dimensional de-
mand vector (from k-DCG) of any player of type t into dt

(i.e., dt = di if player i is of type t). This takes O(τnk)
time. For each player i of type t in τ -DCG, we define a
τ -dimensional unit demand vector d̃i where only the t-
th element is 1, the rest being 0. Given a τ -dimensional
aggregated demand vector x̃r(s) = (x̃r(s)1, ..., x̃r(s)τ ),
where any t-th element represents the total number of
players of type t using r, we define the cost function
c̃r(x̃r(s)) = cr

(∑τ
t=1(x̃r(s))tdt

)
. Thus, c̃r(x̃r(s)) =

cr(xr(s)), where xr(s) is the aggregated demand in the k-
DCG instance under s. Therefore, with the PSNE-equivalent
τ -DCG being a τ -CCG with binary demands and ň =

maxj∈[τ ]

∑
i∈N d̃ij , Corollary 8 gives us the result.

Comparing Theorems 9 and 5, when we have the type infor-
mation, Theorem 9 offers a major saving in running time by
replacing (wmax)

km with ňτm in the multiplicative factor
as well as (wmax)

km with ňm (note the exponential saving
of k) in the interior expression. These savings are especially
pronounced when ň is small.
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Figure 2: Running-time comparison among table-based DP
(TDP), set-based DP (SDP), and table-based DP asymptotic
(TDPA). Encouragingly, even at small scales, TDPA hugely
overestimates the actual running time. (m = 4 and k = 2.)
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Figure 3: Running-time comparison among brute force (BF),
table-based DP (TDP), and set-based DP (SDP). Even at
small scales, brute force does not finish within the allocated
time when n > 20. SDP is the fastest. (m = 2 and k = 3.)

Theorem 9 can be extended to general k-DCGs without any
player types, in which case ň = n. This insight helps us
avoid potentially large wmax ≫ n in the running time of
Theorem 5 by using Theorem 9 instead. Further running
time reduction for the case of ň = n is possible through the
alternative analysis given in the proof of Theorem 6.

Experiments
We have performed experiments to investigate the practical
aspects of the CSP framework for non-monotonic k-DCGs
with binary demand vectors.1 Even with small-scale exper-
iments, we show that the theoretical running-time greatly
overestimates the practical, worst-case running time.

We have implemented two instantiations of the framework:
(1) Table-based DP (TDP), where we use bit vectors to im-
plement the tables, and (2) Set-based DP (SDP), where we
use hash-set data structures to represent the tables. In addi-
tion, we have implemented the brute-force (BF) algorithm
mentioned for the CSP shown in Fig. 1(a). BF is the only
prior algorithm known to us for general k-DCGs.

All three algorithms exhaustively search for all PSNE and
discard a strategy profile as soon as it is clear it cannot lead
to a PSNE. We have benchmarked the theoretical running
time in the worst case for a small table and extrapolated it for
Threoem 5. We call it table-based DP asymptotic (TDPA).
We have used non-monotonic k-DCGs with m parallel links
and varied n for 15 repetitions (see the Appendix).

Fig. 2 shows that the asymptotic running time greatly over-
estimates the actual running time. E.g., for n = 4, TDPA is
about eight orders of magnitude slower than SDP. Further-
more, Fig. 3 shows that SDP and TDP outperform BF easily,
even for very small n. SDP is two orders of magnitude faster
than BF for n = 18. These signify the practical appeal of
our CSP framework against the backdrop of hardness re-

1Code, unit tests, and data are in the supplementary material.

sults. Most importantly, Procedure 2 opens up a range of
possibilities for new CSP-based search algorithms rooted
in, for example, backjumping and learning [Kumar, 1992,
Dechter, 2003, Van Beek, 2006, Rossi et al., 2008]. We
leave a comprehensive experimental study as future work.

5 LEARNING DYNAMICS APPROACH

The second class of algorithms we present is grounded in
learning dynamics, which often presents a natural way of
studying how players arrive at an equilibrium point [Fu-
denberg and Levine, 1998]. As such, learning dynamics is
prominently featured in a wide range of areas from evolu-
tionary game theory [Weibull, 1997], to wireless network
[Lasaulce and Tembine, 2011], to our topic of congestion
games [Shah and Shin, 2010]. In general, learning algo-
rithms may not converge, which leads us to two threads.

First, we consider linear and exponential cost functions with
convergence guarantees [Klimm and Schütz, 2022]. To our
knowledge, we are the first to derive explicit running times
for k-DCGs and their variants for these cost functions. Sec-
ond, we consider the general (potentially non-monotonic)
cost functions with no convergence guarantees. We present
approximation algorithms for this general case.

Linear Cost Functions
We study an iterative best-response algorithm, where players
start with an arbitrary strategy profile and iteratively play
best responses until convergence to a PSNE, for k-DCGs
and their variants using potential functions. Let the linear
cost function of any resource r under a strategy profile s be
cr(xr(s)) ≡ ar

∑
j∈[k] zjxr,j(s)+ br = ar[z ·xr(s)]+ br,

where ar, br ≥ 0 ∀r and the k-dimensional vector z ≥ 0.

We have the following results on k-DCGs and their variants.
The proofs and experimental results are in the Appendix.

Theorem 10. For linear-cost k-DCGs, the best-response

7



algorithm runs in polynomial time if maxr ar,maxr br,
and maxi[z·di]

2

mini[z·di]
are polynomial in n.

Theorem 11. For linear-cost k-DCGs with binary demand
vectors vectors, the best-response algorithm runs in poly-
nomial time if the following cost function parameters are
polynomial in n: maxr ar, maxr br, and maxj zj .

Theorem 12. For linear-cost k-CCGs, the best-response
algorithm runs in polynomial time if maxr ar, maxr br,
maxj z2

j

minj zj
, and

maxi d
2
i,l(i)

mini di,l(i)
are polynomial in n, where l(i) ∈

[k] denotes the index of the non-zero element in di.

Exponential Cost Functions
Below is our result for exponential cost cr(xr(s)) ≡
ar exp(z · xr(s)) + br. Details are in the Appendix.

Theorem 13. The best-response algorithm runs in poly-
nomial time for exponential-cost k-DCGs if maxr ar and
maxr br are polynomial in n and [z · dN ] is O(log n).

Approximate PSNE for General Cost Functions
We now present an (α, β)-PSNE algorithm for general
cost. Let ∆r ≡ max{maxi∈N,s∈S;r∈si cr(xr(s) − di) −
cr(xr(s)), 0} be the maximum non-negative marginal de-
crease of any player for resource r. When the congestion
function is nondecreasing, ∆r = 0. Otherwise, ∆r > 0.
Let ∆max = maxr∈R ∆r. We obtain the following result
generalizing the result in [Christodoulou et al., 2023].

Theorem 14. Every k-DCG has an (α, β)-PSNE for α = n
and β = (n− 1)m∆max. Furthermore, it can be computed
using an iterative algorithm that is guaranteed to converge.

In the iterative algorithm of Theorem 14, at each round, if
πi(si, s−i) > nπi(s

′
i, s−i)+(n−1)m∆max for any player

i currently playing si, i deviates to s′i. As the set of strategy
profiles is finite, we eventually reach an (α, β)-PSNE. The
result is especially useful for small ∆max (e.g., noise).

6 STRUCTURED COSTS AND DEMANDS

Our study of structured costs and demands is motivated by
a variety of realistic examples of traffic congestion games,
where resources represent roads. As an example of struc-
tured/ordered demands, vehicles can be ordered by their
demand vectors representing width, length, weight, etc. A
common example of nondecreasing cost function is more
vehicles on a road means higher costs for everyone. Single-
ton strategies are seen in grid-patterned road networks with
parallel roads to go from source to destination [Milchtaich,
2006]. We also consider structured cost functions– e.g., dif-
ferent types of roads have different speed limits: highways,
county routes, local roads, etc.

Ordered Demand, Nondecreasing Cost, Singleton Strat.
Suppose that the players can be ordered according to their

demand vectors: d1 ≥ d2 ≥ ... ≥ dn (w.l.o.g.). Let each
player i’s set of singleton strategies Si = {{r} | r ∈ R}. In
addition, assume that the cost functions are nondecreasing.
We can compute a PSNE using the greedy best response
algorithm, which orders the players from high to low de-
mand and lets them play their best response in that order
[Milchtaich, 2006]. Details are in the Appendix.

Theorem 15. For a k-DCG with ordered demand vectors,
nondecreasing cost functions, and singleton-resource strate-
gies, a PSNE can be computed in O(n log n+ nmk) time.

Ordered Demand, Nondecreasing Cost, Shared Strat.
We relax the assumption of singleton-resource strategies.
We show that as long as the players have the same set of
strategies, we can compute a PSNE efficiently using the
greedy best response algorithm.

Theorem 16. For a k-DCG with ordered demand vectors,
nondecreasing cost functions, and a shared set of strategies
of size p, a PSNE can be computed in O(n log n+ npmk).

Structured Cost Functions and Singleton Strategies
In this scenario, we do not assume any ordering among
the demands of the players. Instead, we assume that the
cost functions are nondecreasing and that the resources are
ordered by their cost functions. That is, w.l.o.g., c1(x) ≥
c2(x) ≥ ... ≥ cm(x) for any x. We also assume that there
are constants αj ≥ 1 such that cj−1(x) = αjcj(x) for any
resource j > 1 and x. These assumptions mean that some
resources are more costly than others and that the costs of
the resources are “nicely separated.” Finally, we assume
singleton-resource strategies. We get the following result.

Theorem 17. For a k-DCG with nondecreasing and struc-
tured cost functions, where there are constants αj ≥ 1 such
that cj−1(x) = αjcj(x) for any resource j > 1 and aggre-
gate demand vector x, and singleton-resource strategies, a
PSNE can be computed in O(n log n+ nmk) time.

7 CONCLUSION

We have conducted a thorough computational study of k-
DCGs and their variants using two different computational
methods: CSP and learning dynamics. Our dual CSP frame-
work, which has not been studied before within the ex-
tremely rich congestion games literature, holds promise for
future research within and outside of congestion games.
We are particularly interested in designing and implement-
ing CSP-inspired search algorithms—such as backjumping
(Gaschnig, graph-based, conflict directed, etc.) and learn-
ing algorithms [Dechter, 2003]—for network congestion
games. To our knowledge, CSP-based large-scale experi-
mental work is yet to be done on congestion games. Beyond
the realm of congestion games, our key insight of decou-
pling players’ strategies may have applications in many
other game-theoretic problems.
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