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ABSTRACT
We study pure-strategy Nash equilibrium (PSNE) computation in

𝑘-dimensional congestion games (𝑘-DCGs) where the weights or

demands of the players are 𝑘-dimensional vectors. We first show

that deciding the existence of a PSNE in a 𝑘-DCG is NP-complete

even for games when players have binary and unit demand vectors.

We then focus on computing PSNE for 𝑘-DCGs and their variants

with general, linear, and exponential cost functions. For general

cost functions (potentially non-monotonic), we provide the first

configuration-space framework to find a PSNE if one exists. For

linear and exponential cost functions, we provide potential function-

based algorithms to find a PSNE. These algorithms run in polyno-

mial time under certain assumptions. We also study structured

demands and cost functions, giving polynomial-time algorithms to

compute PSNE for several cases. For general cost functions, we give

a constructive proof of existence for an (𝛼, 𝛽)-PSNE (for certain 𝛼

and 𝛽), where 𝛼 and 𝛽 are multiplicative and additive approximation

factors, respectively.
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MULTIDIMENSIONAL CONGESTION GAMES
In congestion games [17], there are a number of resources (e.g.,

edges in a road network). Each player has a set of strategies, where

each strategy is a subset of resources (e.g., source-destination paths

in a road network). A strategy profile consists of a strategy for

each player. The cost of a resource (e.g., edge) is a function of

the number of players using that resource. Under a given strategy

profile, the cost to a player is the sum of the costs of the resources

used by the player in their own strategy. A strategy profile is called a
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pure-strategy Nash equilibrium (PSNE) if no player can unilaterally

decrease their cost by choosing a different strategy.

Congestion games can be broadly divided into three main classes:

unweighted [1, 4, 15, 17], weighted [3, 5–9, 12–14, 16], and multi-

dimensional [10, 11]. Unweighted congestion games are the classi-

cal ones described in the previous paragraph. In a weighted con-

gestion game, each player has a weight or demand. Multidimen-

sional congestion games extendweighted congestion games bymak-

ing the weight a multidimensional vector. Very recently, Klimm

and Schütz [11] have characterized the existence of PSNE in 𝑘-

dimensional congestion games (𝑘-DCGs). Their characterization

leads to the following computational questions, which we address

here: How can we compute a PSNE (if it exists) in multidimensional
congestion games and their variants? How hard is this computation?

Formally, a 𝑘-dimensional congestion game (𝑘-DCG) consists

of a set 𝑁 = {1, . . . , 𝑛} of 𝑛 players and a set 𝑅 = {1, . . . ,𝑚} of𝑚
resources. Each player 𝑖 has two elements: (1) a strategy set 𝑆𝑖 ⊆ 2

𝑅\
{∅} and (2) a 𝑘-dimensional demand vector d𝑖 = (𝑑𝑖1 , ..., 𝑑𝑖𝑘 ) ∈ R𝑘 .
Each resource 𝑟 has a cost function 𝑐𝑟 : R𝑘 → R. We use 𝑝 to

denote the maximum number of strategies of any player.

Given a strategy profile s = (𝑠1, ..., 𝑠𝑛) ∈ 𝑆 = 𝑆1 × ... × 𝑆𝑛 ,

let x𝑟 (s) =
∑
𝑖∈𝑁 :𝑟 ∈𝑠𝑖 d𝑖 be the aggregated 𝑘-dimensional demand

vector of the players who select resource 𝑟 under s. Given a strategy

profile s, the cost function of player 𝑖 is defined to be 𝜋𝑖 (s) =

𝜋𝑖 (𝑠𝑖 , s−𝑖 ) =
∑
𝑟 ∈𝑠𝑖 𝑐𝑟 (x𝑟 (s)). A strategy profile s∗ is a pure-strategy

Nash equilibrium (PSNE) in a 𝑘-DCG if and only if for each player

𝑖 and any 𝑠′
𝑖
∈ 𝑆𝑖 , 𝜋𝑖 (s∗) ≤ 𝜋𝑖 (𝑠′𝑖 , s

∗
−𝑖 ) .

We are interested in computing pure-strategy Nash equilibria of

𝑘-DCGs and their variants listed below.

• 𝑘-DCGs with binary demand vectors d𝑖 ∈ {0, 1}𝑘 ∀𝑖 .
• 𝑘-class congestion games (𝑘-CCGs), where each demand

vector has one positive element, the rest being zeros.

• 𝑘-DCGs with player types, where players of the same type

are characterized by the same demand vector.

COMPUTATIONAL COMPLEXITY
We show that deciding the existence of a PSNE in special variants

of 𝑘-DCGs is NP-complete. The following results are interesting in

the context of known hardness results, such as NP-completeness of

deciding PSNE in weighted congestion games (i.e., 𝑘 = 1) [3].

Theorem 1. Deciding the existence of a PSNE in a 𝑘-DCG is NP-
complete even when the demand vector d𝑖 of each player 𝑖 ∈ 𝑁 is a
binary vector and 𝑘 is sublinear in the number of players. That is,
d𝑖 ∈ {0, 1}𝑘 for all 𝑖 and 𝑘 = O(log𝑛).
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Theorem 2. Deciding the existence of a PSNE in a 𝑘-DCG (or a 𝑘-
CCG) is NP-complete even when the demand vector d𝑖 of each player
𝑖 ∈ 𝑁 is a binary unit vector and 𝑘 is linear of the number of players.
That is, d𝑖 ∈ {x ∈ {0, 1}𝑘 ;

∑𝑘
𝑗=1

𝑥 𝑗 = 1} for all 𝑖 and 𝑘 = O(𝑛).

GENERAL COST FUNCTIONS
For 𝑘-DCGs and their variants with general cost functions (poten-

tially non-monotonic), we present algorithms that are polynomial

in 𝑛 (the number of players), 𝑝 (the maximum number of strategies

for any player), and a maximum weight term when 𝑘 (number of

dimensions) and𝑚 (number of resources) are bounded. This is use-

ful for congestion games in which there is a constant number of

dimensions and strategies with many players.

Our algorithmic framework explores the configuration space (i.e.,

the space of aggregated demand vectors) for computing a PSNE. It

works by exploring the possible aggregated demand vectors of all

players and verifying (non-trivially) whether an aggregated demand

vector can lead to a PSNE. For variants of 𝑘-DCGs, such as 𝑘-DCGs

with player types, 𝑘-DCGs with binary demands, and 𝑘-CCGs, we

exploit their structures to derive the following results.

In the following results, we define𝑤max = max𝑗∈[𝑘 ] 𝑤 𝑗 , where

𝑤 𝑗 =
∑
𝑖∈𝑁 𝑑𝑖 𝑗 for each 𝑗 = 1, ..., 𝑘 .

Theorem 3. For any𝑘-DCG, there is an algorithm to determine the
existence of a PSNE in O((𝑤max)𝑘𝑚 (𝑛𝑘𝑝2𝑚2 + 𝑛𝑘𝑚𝑝 (𝑤max)𝑘𝑚)),
which is polynomial in 𝑛, 𝑝 , and𝑤max, when𝑚 and 𝑘 are constants.

In the following result on 𝑘-DCGs with binary demand, we use

�̌� = max𝑗∈[𝑘 ]
∑
𝑖∈𝑁 𝑑𝑖 𝑗 in place of𝑤max to represent the maximum

number of players having any particular demand vector bit on. This

result improves the running time given by Theorem 3.

Theorem 4. For 𝑘-DCGs with binary demand vectors, there is
an O(�̌�𝑘𝑚 (𝑛𝑘𝑝2𝑚2 + min{𝑛𝑘𝑚𝑝�̌�𝑘𝑚, 𝑛𝑘𝑚+1𝑝}))-time algorithm to
compute a PSNE or decide that there exists none. The algorithm is
polynomial in 𝑛 and 𝑝 when𝑚 and 𝑘 are constants.

We use a partitioning technique to derive the following result

for 𝑘-CCGs, improving the running time given by Theorem 3.

Theorem 5. For 𝑘-CCGs, there is an O ((𝑤max)𝑘𝑚 (𝑛𝑝2𝑚2 +
𝑛𝑘𝑝𝑚(𝑤max)𝑚))-time algorithm to compute a PSNE or decide that
there exists none. The algorithm is polynomial in 𝑛, 𝑝 , and𝑤max when
𝑚 and 𝑘 are constants.

We get the following corollary from Theorems 4 and 5.

Corollary 1. For 𝑘-CCGs with binary demand vectors, there is an
O((�̌�)𝑘𝑚 (𝑛𝑝2𝑚2 + 𝑛𝑘𝑝𝑚(�̌�)𝑚))-time algorithm to compute a PSNE
or decide that there exists none. The algorithm is polynomial in 𝑛 and
𝑝 when𝑚 and 𝑘 are constants.

We have the following result for 𝑘-DCGs with player types.

Theorem 6. Given a 𝑘-DCG with 𝜏 types of players and at most �̌�
players of any type, there is an O((�̌�)𝜏𝑚 (𝑛𝑝2𝑚2 +𝑛𝜏𝑝𝑚(�̌�)𝑚) +𝜏𝑛𝑘)
time algorithm to compute a PSNE or decide that there exists none.
The algorithm is polynomial in 𝑛 and 𝑝 for bounded𝑚 and 𝜏 .

Computing Approximate PSNE
A strategy profile s is an (𝛼, 𝛽)-PSNE in a 𝑘-DCG for some 𝛼 ≥ 1

and 𝛽 ≥ 0 if and only if for each player 𝑖 and any 𝑠′
𝑖
∈ 𝑆𝑖 , 𝜋𝑖 (s) ≤

𝛼𝜋𝑖 (𝑠′𝑖 , s−𝑖 ) + 𝛽 . The following result generalizes the result in [2]

by removing the monotonicity assumption while retaining the non-

negative cost assumption. Here,Δmax is themaximum non-negative

marginal decrease of any player due to deviation.

Theorem 7. Every 𝑘-DCG has an (𝛼, 𝛽)-PSNE for 𝛼 = 𝑛 and
𝛽 = (𝑛−1)𝑚Δmax. Furthermore, it can be computed using an iterative
algorithm that is guaranteed to converge.

STRUCTURED COSTS AND DEMANDS
The following results utilize structural information regarding the

cost functions (e.g., how the costs of resources compare with each

other), demand vectors (e.g., whether the players can be ordered by

their demand vectors), and strategies.

Theorem 8. For a 𝑘-DCG with ordered demand vectors, nonde-
creasing cost functions, and singleton-resource strategies, a PSNE can
be computed in O(𝑛 log𝑛 + 𝑛𝑚𝑘) time.

Theorem 9. For a 𝑘-DCG with ordered demand vectors, nonde-
creasing cost functions, and a shared set of strategies of size 𝑝 , a PSNE
can be computed in O(𝑛 log𝑛 + 𝑛𝑝𝑚𝑘) time.

Theorem 10. For a 𝑘-DCG with nondecreasing and structured
cost functions where there are constants 𝛼 𝑗 ≥ 1 such that 𝑐 𝑗−1 (x) =
𝛼 𝑗𝑐 𝑗 (x) for any resource 𝑗 > 1 and aggregate demand vector x, and
singleton-resource strategies, a PSNE can be computed in O(𝑛 log𝑛 +
𝑛𝑚𝑘) time.

LINEAR AND EXPONENTIAL COST
For linear and exponential cost, for which existence of PSNE in 𝑘-

DCGs is guaranteed [11], we give potential function-based iterative

best-response algorithms by bounding weighted potential functions.

First, let the linear cost function of any resource 𝑟 under a strategy

profile s be 𝑐𝑟 (x𝑟 (s)) ≡ 𝑎𝑟
∑

𝑗∈[𝑘 ] 𝑧 𝑗x𝑟,𝑗 (s) +𝑏𝑟 = 𝑎𝑟 [z ·x𝑟 (s)] +𝑏𝑟 ,
where 𝑎𝑟 , 𝑏𝑟 ≥ 0 for all 𝑟 and the 𝑘-dimensional vector z ≥ 0. We

have the following results on 𝑘-DCGs and their variants

Theorem 11. The best-response algorithm runs in polynomial

time if max𝑟 𝑎𝑟 ,max𝑟 𝑏𝑟 , and
max𝑖 [z·d𝑖 ]2

min𝑖 [z·d𝑖 ] are polynomial in 𝑛.

Theorem 12. When the demands are binary vectors, the algorithm
runs in polynomial time if the following cost function parameters are
polynomial in 𝑛: max𝑟 𝑎𝑟 , max𝑟 𝑏𝑟 , and max𝑗 𝑧 𝑗 .

Theorem 13. For 𝑘-CCG, the algorithm runs in polynomial time if

max𝑟 𝑎𝑟 , max𝑟 𝑏𝑟 ,
max𝑗 𝑧

2

𝑗

min𝑗 𝑧 𝑗
, and

max𝑖 𝑑
2

𝑖,𝑙 (𝑖 )
min𝑖 𝑑𝑖,𝑙 (𝑖 )

are polynomial in 𝑛, where
𝑙 (𝑖) ∈ [𝑘] denotes the index of the non-zero element in d𝑖 .

Finally, for exponential cost functions 𝑐𝑟 (x𝑟 (s)) = 𝑎𝑟 exp(z ·
x𝑟 (s)) + 𝑏𝑟 , the following result characterizes the running time of

the iterative best-response algorithm explicitly.

Theorem 14. The best-response algorithm runs in polynomial time
for 𝑘-DCGs with exponential cost functions if max𝑟 𝑎𝑟 and max𝑟 𝑏𝑟
are polynomial in 𝑛 and [z · d𝑁 ] is O(log𝑛).
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